Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Actual. SIDA. infectol ; 30(109): 11-29, 20220000. fig
Artículo en Español | LILACS, BINACIS | ID: biblio-1392440

RESUMEN

El virus de la viruela símica es un orthopoxvirus de características zoonóticas endémico en las regiones de África Central y África Occidental, donde causa brotes desde 1970. En las últimas décadas se registró un aumento exponencial de casos, probablemente asociado a la disminución en la inmunidad conferida por la vacuna antivariólica, discontinuada luego de la erradicación de la viruela. En los últimos años se registraron casos esporádicos fuera del continente africano, siempre relacionados epidemiológicamente a la permanencia en áreas endémicas o contacto con animales infectados. Desde el 13 de mayo de 2022 se encuentra en curso el mayor brote de viruela símica registrado fuera de las áreas endémicas de África, con casos en los cinco continentes. La extensión, el impacto y la duración del brote permanecen aún inciertos.


Monkeypox virus is an orthopoxvirus with zoonotic characteristics endemic in Central and West Africa regions, where it has caused outbreaks since 1970. An exponential increase in cases has been registered in the last decades, probably associated with a decrease in the immunity conferred by the smallpox vaccine, discontinued after smallpox eradication. In recent years, sporadic cases have been reported outside the African continent, always epidemiologically related to permanence in endemic areas or contact with infected animals. Since May 13, 2022, the largest monkeypox outbreak ever reported outside Africa endemic areas, with cases on the five continents, is unfolding. The extent, impact and duration of this outbreak still remain uncertain


Asunto(s)
Humanos , Vacunas , Orthopoxvirus/inmunología , Infecciones por Poxviridae/terapia , Enfermedades Endémicas , Enfermedades Transmisibles Emergentes/inmunología , Viruela del Mono/prevención & control , Viruela del Mono/terapia , Viruela del Mono/transmisión , Viruela del Mono/epidemiología
2.
Viruses ; 14(2)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35215994

RESUMEN

In the prevention and treatment of infectious diseases, mRNA vaccines hold great promise because of their low risk of insertional mutagenesis, high potency, accelerated development cycles, and potential for low-cost manufacture. In past years, several mRNA vaccines have entered clinical trials and have shown promise for offering solutions to combat emerging and re-emerging infectious diseases such as rabies, Zika, and influenza. Recently, the successful application of mRNA vaccines against COVID-19 has further validated the platform and opened the floodgates to mRNA vaccine's potential in infectious disease prevention, especially in the veterinary field. In this review, we describe our current understanding of the mRNA vaccines and the technologies used for mRNA vaccine development. We also provide an overview of mRNA vaccines developed for animal infectious diseases and discuss directions and challenges for the future applications of this promising vaccine platform in the veterinary field.


Asunto(s)
Control de Enfermedades Transmisibles , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles/virología , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Zoonosis/prevención & control , Vacunas de ARNm/genética , Vacunas de ARNm/inmunología , Animales , Enfermedades Transmisibles/clasificación , Enfermedades Transmisibles Emergentes/inmunología , Humanos , Vacunas Sintéticas/análisis , Vacunas Sintéticas/clasificación , Zoonosis/inmunología , Zoonosis/transmisión , Vacunas de ARNm/análisis , Vacunas de ARNm/clasificación
3.
Elife ; 102021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34544548

RESUMEN

Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind's insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild.


Asunto(s)
Evolución Biológica , Enfermedades Transmisibles Emergentes/transmisión , Reservorios de Enfermedades , Zoonosis/transmisión , Animales , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/inmunología , Interacciones Huésped-Patógeno , Humanos , Virulencia , Zoonosis/epidemiología , Zoonosis/inmunología
4.
Front Immunol ; 12: 690976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335596

RESUMEN

Different emerging viral infections may emerge in different regions of the world and pose a global pandemic threat with high fatality. Clarification of the immunopathogenesis of different emerging viral infections can provide a plan for the crisis management and prevention of emerging infections. This perspective article describes how an emerging viral infection evolves from microbial mutation, zoonotic and/or vector-borne transmission that progresses to a fatal infection due to overt viremia, tissue-specific cytotropic damage or/and immunopathology. We classified immunopathogenesis of common emerging viral infections into 4 categories: 1) deficient immunity with disseminated viremia (e.g., Ebola); 2) pneumocytotropism with/without later hyperinflammation (e.g., COVID-19); 3) augmented immunopathology (e.g., Hanta); and 4) antibody-dependent enhancement of infection with altered immunity (e.g., Dengue). A practical guide to early blocking of viral evasion, limiting viral load and identifying the fatal mechanism of an emerging viral infection is provided to prevent and reduce the transmission, and to do rapid diagnoses followed by the early treatment of virus neutralization for reduction of morbidity and mortality of an emerging viral infection such as COVID-19.


Asunto(s)
COVID-19/inmunología , Enfermedades Transmisibles Emergentes/inmunología , Evasión Inmune/inmunología , SARS-CoV-2/fisiología , Virosis/inmunología , Animales , Acrecentamiento Dependiente de Anticuerpo , COVID-19/mortalidad , COVID-19/prevención & control , Humanos , Pandemias , Análisis de Supervivencia , Virosis/mortalidad , Virosis/prevención & control
5.
Emerg Med Clin North Am ; 39(3): 453-465, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34215396

RESUMEN

The role of the emergency provider lies at the forefront of recognition and treatment of novel and re-emerging infectious diseases in children. Familiarity with disease presentations that might be considered rare, such as vaccine-preventable and non-endemic illnesses, is essential in identifying and controlling outbreaks. As we have seen thus far in the novel coronavirus pandemic, susceptibility, severity, transmission, and disease presentation can all have unique patterns in children. Emergency providers also have the potential to play a public health role by using lessons learned from the phenomena of vaccine hesitancy and refusal.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Pediatría , COVID-19/diagnóstico , COVID-19/terapia , COVID-19/transmisión , Varicela/diagnóstico , Varicela/terapia , Varicela/transmisión , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/terapia , Fiebre Chikungunya/transmisión , Niño , Enfermedades Transmisibles Emergentes/inmunología , Árboles de Decisión , Dengue/diagnóstico , Dengue/terapia , Dengue/transmisión , Medicina de Emergencia , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/terapia , Fiebre Hemorrágica Ebola/transmisión , Humanos , Incidencia , Malaria/diagnóstico , Malaria/terapia , Malaria/transmisión , Sarampión/diagnóstico , Sarampión/terapia , Sarampión/transmisión , Rol del Médico , Salud Pública , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica , Enfermedad Relacionada con los Viajes , Vacunación , Negativa a la Vacunación , Tos Ferina/diagnóstico , Tos Ferina/terapia , Tos Ferina/transmisión , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/terapia , Infección por el Virus Zika/transmisión
6.
Nat Rev Immunol ; 21(12): 815-822, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34140665

RESUMEN

Since the initial use of vaccination in the eighteenth century, our understanding of human and animal immunology has greatly advanced and a wide range of vaccine technologies and delivery systems have been developed. The COVID-19 pandemic response leveraged these innovations to enable rapid development of candidate vaccines within weeks of the viral genetic sequence being made available. The development of vaccines to tackle emerging infectious diseases is a priority for the World Health Organization and other global entities. More than 70% of emerging infectious diseases are acquired from animals, with some causing illness and death in both humans and the respective animal host. Yet the study of critical host-pathogen interactions and the underlying immune mechanisms to inform the development of vaccines for their control is traditionally done in medical and veterinary immunology 'silos'. In this Perspective, we highlight a 'One Health vaccinology' approach and discuss some key areas of synergy in human and veterinary vaccinology that could be exploited to accelerate the development of effective vaccines against these shared health threats.


Asunto(s)
Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/prevención & control , Reacciones Cruzadas/inmunología , Vacunación , Vacunas/inmunología , Zoonosis Virales/inmunología , Zoonosis Virales/prevención & control , Animales , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/prevención & control , Humanos , SARS-CoV-2/inmunología , Especificidad de la Especie , Zoonosis Virales/transmisión
7.
Viruses ; 13(6)2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072720

RESUMEN

Identification of therapeutics against emerging and re-emerging viruses remains a continued priority that is only reinforced by the recent SARS-CoV-2 pandemic. Advances in monoclonal antibody (mAb) isolation, characterization, and production make it a viable option for rapid treatment development. While mAbs are traditionally screened and selected based on potency of neutralization in vitro, it is clear that additional factors contribute to the in vivo efficacy of a mAb beyond viral neutralization. These factors include interactions with Fc receptors (FcRs) and complement that can enhance neutralization, clearance of infected cells, opsonization of virions, and modulation of the innate and adaptive immune response. In this review, we discuss recent studies, primarily using mouse models, that identified a role for Fc-FcγR interactions for optimal antibody-based protection against emerging and re-emerging virus infections.


Asunto(s)
Enfermedades Transmisibles Emergentes/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Receptores de IgG/inmunología , Virosis/inmunología , Virus/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Citotoxicidad Celular Dependiente de Anticuerpos , Enfermedades Transmisibles Emergentes/terapia , Enfermedades Transmisibles Emergentes/virología , Humanos , Inmunización Pasiva , Fagocitosis , Virosis/terapia , Virosis/virología , Virus/clasificación
8.
Cells ; 10(6)2021 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-34070971

RESUMEN

The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans.


Asunto(s)
Inmunidad Adaptativa/genética , Camelus/virología , Enfermedades Transmisibles Emergentes/inmunología , Infecciones por Coronavirus/inmunología , Inmunidad Innata/genética , Zoonosis/inmunología , Animales , Anticuerpos Antivirales , Bronquios/citología , Bronquios/fisiología , COVID-19/genética , COVID-19/inmunología , COVID-19/virología , Camelus/genética , Camelus/inmunología , Cilios/fisiología , Enfermedades Transmisibles Emergentes/genética , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Reservorios de Enfermedades/virología , Femenino , Predisposición Genética a la Enfermedad , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Masculino , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Mucosa Respiratoria/citología , Mucosa Respiratoria/fisiología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Emiratos Árabes Unidos , Replicación Viral/genética , Replicación Viral/inmunología , Zoonosis/genética , Zoonosis/transmisión , Zoonosis/virología
9.
Emerg Microbes Infect ; 10(1): 1200-1208, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34044749

RESUMEN

ABSTRACTSeveral nairo-like viruses have been discovered in ticks in recent years, but their relevance to public health remains unknown. Here, we found a patient who had a history of tick bite and suffered from a febrile illness was infected with a previously discovered RNA virus, Beiji nairovirus (BJNV), in the nairo-like virus group of the order Bunyavirales. We isolated the virus by cell culture assay. BJNV could induce cytopathic effects in the baby hamster kidney and human hepatocellular carcinoma cells. Negative-stain electron microscopy revealed enveloped and spherical viral particles, morphologically similar to those of nairoviruses. We identified 67 patients as BJNV infection in 2017-2018. The median age of patients was 48 years (interquartile range 41-53 years); the median incubation period was 7 days (interquartile range 3-12 days). Most patients were men (70%), and a few (10%) had underlying diseases. Common symptoms of infected patients included fever (100%), headache (99%), depression (63%), coma (63%), and fatigue (54%), myalgia or arthralgia (45%); two (3%) patients became critically ill and one died. BJNV could cause growth retardation, viremia and histopathological changes in infected suckling mice. BJNV was also detected in sheep, cattle, and multiple tick species. These findings demonstrated that the newly discovered nairo-like virus may be associated with a febrile illness, with the potential vectors of ticks and reservoirs of sheep and cattle, highlighting its public health significance and necessity of further investigation in the tick-endemic areas worldwide.


Asunto(s)
Infecciones por Bunyaviridae/virología , Enfermedades Transmisibles Emergentes/virología , Nairovirus , Enfermedades por Picaduras de Garrapatas/virología , Adulto , Animales , Anticuerpos Antivirales/sangre , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/inmunología , Infecciones por Bunyaviridae/fisiopatología , China/epidemiología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/fisiopatología , Femenino , Fiebre , Genoma Viral , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Nairovirus/clasificación , Nairovirus/genética , Nairovirus/inmunología , Nairovirus/aislamiento & purificación , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/inmunología , Enfermedades por Picaduras de Garrapatas/fisiopatología , Garrapatas/virología , Viremia
10.
PLoS Negl Trop Dis ; 15(4): e0009289, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33878115

RESUMEN

BACKGROUND: Chikungunya is an arbovirus, transmitted by Aedes mosquitoes, which emerged in the Americas in 2013 and spread rapidly to almost every country on this continent. In Brazil, where the first cases were detected in 2014, it currently has reached all regions of this country and more than 900,000 cases were reported. The clinical spectrum of chikungunya ranges from an acute self-limiting form to disabling chronic forms. The purpose of this study was to estimate the seroprevalence of chikungunya infection in a large Brazilian city and investigate the association between viral circulation and living condition. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a population-based ecological study in selected Sentinel Areas (SA) through household interviews and a serologic survey in 2016/2017. The sample was of 1,981 individuals randomly selected. The CHIKV seroprevalence was 22.1% (17.1 IgG, 2.3 IgM, and 1.4 IgG and IgM) and varied between SA from 2.0% to 70.5%. The seroprevalence was significantly lower in SA with high living conditions compared to SA with low living condition. There was a positive association between CHIKV seroprevalence and population density (r = 0.2389; p = 0.02033). CONCLUSIONS/SIGNIFICANCE: The seroprevalence in this city was 2.6 times lower than the 57% observed in a study conducted in the epicentre of the CHIKV epidemic of this same urban centre. So, the herd immunity in this general population, after four years of circulation of this agent is relatively low. It indicates that CHIKV transmission may persist in that city, either in endemic form or in the form of a new epidemic, because the vector infestation is persistent. Besides, the significantly lower seroprevalences in SA of higher Living Condition suggest that beyond the surveillance of the disease, vector control and specific actions of basic sanitation, the reduction of the incidence of this infection also depends on the improvement of the general living conditions of the population.


Asunto(s)
Anticuerpos Antivirales/sangre , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/virología , Virus Chikungunya/inmunología , Adolescente , Adulto , Anciano , Brasil/epidemiología , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/transmisión , Niño , Preescolar , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Brotes de Enfermedades , Femenino , Humanos , Inmunidad Colectiva , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Lactante , Masculino , Persona de Mediana Edad , Vigilancia de la Población , Estudios Seroepidemiológicos , Adulto Joven
11.
Crit Rev Microbiol ; 47(3): 307-322, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33570448

RESUMEN

The ongoing COVID-19 pandemic has made us wonder what led to its occurrence and what can be done to avoid such events in the future. As we document, one changing circumstance that is resulting in the emergence and changing the expression of viral diseases in both plants and animals is climate change. Of note, the rapidly changing environment and weather conditions such as excessive flooding, droughts, and forest fires have raised concerns about the global ecosystem's security, sustainability, and balance. In this review, we discuss the main consequences of climate change and link these to how they impact the appearance of new viral pathogens, how they may facilitate transmission between usual and novel hosts, and how they may also affect the host's ability to manage the infection. We emphasize how changes in temperature and humidity and other events associated with climate change influence the reservoirs of viral infections, their transmission by insects and other intermediates, their survival outside the host as well the success of infection in plants and animals. We conclude that climate change has mainly detrimental consequences for the emergence, transmission, and outcome of viral infections and plead the case for halting and hopefully reversing this dangerous event.


Asunto(s)
COVID-19/transmisión , Cambio Climático , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades de las Plantas/virología , Virosis/transmisión , Animales , Organismos Acuáticos/virología , COVID-19/complicaciones , COVID-19/etiología , COVID-19/inmunología , Quirópteros/virología , Enfermedades Transmisibles Emergentes/complicaciones , Enfermedades Transmisibles Emergentes/etiología , Enfermedades Transmisibles Emergentes/inmunología , Productos Agrícolas/virología , Reservorios de Enfermedades/virología , Vectores de Enfermedades/clasificación , Abastecimiento de Alimentos , Humanos , Humedad , Enfermedades de las Plantas/inmunología , Enfermedades de los Primates/transmisión , Enfermedades de los Primates/virología , Primates , Lluvia , Estaciones del Año , Temperatura , Virosis/complicaciones , Virosis/etiología , Virosis/inmunología
12.
J Infect Dis ; 223(2): 326-332, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32594132

RESUMEN

BACKGROUND: Haemophilus influenzae bacteria can cause asymptomatic carriage and invasive disease. Haemophilus influenzae serotype a (Hia) is an emerging cause of invasive disease in Alaska, with greatest burden occurring among rural Alaska Native (AN) children. The first case of invasive Hia (iHia) in Alaska was reported in 2002; however, it is unclear how long the pathogen has been in Alaska. METHODS: We quantified immunoglobulin G antibodies against Hia (anti-Hia) in 839 banked serum samples from Alaska residents, comparing antibody concentrations in samples drawn in the decades before (1980s and 1990s) and after (2000s) the emergence of iHia. We also assessed serum antibody concentration by age group, region of residence, and race. RESULTS: The anti-Hia was >0.1 µg/mL in 88.1% (348 of 395) and 91.0% (404 of 444) of samples from the decades prior and after the emergence of Hia, respectively (P = .17). No significant differences in antibody levels were detected between people from rural and urban regions (1.55 vs 2.08 µg/mL, P = .91 for age ≥5) or between AN and non-AN people (2.50 vs 2.60 µg/mL, P = .26). CONCLUSIONS: Our results are consistent with widespread Hia exposure in Alaska predating the first iHia case. No difference in Hia antibody prevalence was detected between populations with differing levels of invasive disease.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/inmunología , Infecciones por Haemophilus/epidemiología , Infecciones por Haemophilus/inmunología , Haemophilus influenzae/inmunología , Alaska/epidemiología , Enfermedades Transmisibles Emergentes/historia , Enfermedades Transmisibles Emergentes/microbiología , Infecciones por Haemophilus/historia , Infecciones por Haemophilus/microbiología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Inmunoglobulina G/inmunología , Prevalencia , Vigilancia en Salud Pública , Estudios Seroepidemiológicos , Serogrupo
13.
Am J Trop Med Hyg ; 104(3): 1058-1066, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33319725

RESUMEN

Dengue is a re-emerging global public health problem, the most common arbovirus causing human disease in the world, and a major cause of hospitalization in endemic countries causing significant economic burden. Data were analyzed from passive surveillance of hospital-attended dengue cases from 2002 to 2018 at Phramongkutklao Hospital (PMKH) located in Bangkok, Thailand, and Kamphaeng Phet Provincial Hospital (KPPH) located in the lower northern region of Thailand. At PMKH, serotype 1 proved to be the most common strain of the virus, whereas at KPPH, serotypes 1, 2, and 3 were the most common strains from 2006 to 2008, 2009 to 2012, and 2013 to 2015, respectively. The 11-17 years age-group made up the largest proportion of patients impacted by dengue illnesses during the study period at both sites. At KPPH, dengue virus (DENV)-3 was responsible for most cases of dengue fever (DF), whereas it was DENV-1 at PMKH. In cases where dengue hemorrhagic fever was the clinical diagnosis, DENV-2 was the predominant serotype at KPPH, whereas at PMKH, it was DENV-1. The overall disease prevalence remained consistent across the two study sites with DF being the predominant clinical diagnosis as the result of an acute secondary dengue infection, representing 40.7% of overall cases at KPPH and 56.8% at PMKH. The differences seen between these sites could be a result of climate change increasing the length of dengue season and shifts in migration patterns of these populations from rural to urban areas and vice versa.


Asunto(s)
Virus del Dengue/clasificación , Dengue/epidemiología , Adolescente , Adulto , Niño , Preescolar , Enfermedades Transmisibles Emergentes/clasificación , Enfermedades Transmisibles Emergentes/diagnóstico , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/inmunología , Dengue/clasificación , Dengue/diagnóstico , Dengue/inmunología , Virus del Dengue/inmunología , Enfermedades Endémicas , Femenino , Hospitales Públicos , Humanos , Lactante , Masculino , Persona de Mediana Edad , Tailandia/epidemiología , Adulto Joven
14.
Annu Rev Virol ; 7(1): 447-473, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32991264

RESUMEN

Hendra virus (HeV) and Nipah virus (NiV) are bat-borne zoonotic para-myxoviruses identified in the mid- to late 1990s in outbreaks of severe disease in livestock and people in Australia and Malaysia, respectively. HeV repeatedly re-emerges in Australia while NiV continues to cause outbreaks in South Asia (Bangladesh and India), and these viruses have remained transboundary threats. In people and several mammalian species, HeV and NiV infections present as a severe systemic and often fatal neurologic and/or respiratory disease. NiV stands out as a potential pandemic threat because of its associated high case-fatality rates and capacity for human-to-human transmission. The development of effective vaccines, suitable for people and livestock, against HeV and NiV has been a research focus. Here, we review the progress made in NiV and HeV vaccine development, with an emphasis on those approaches that have been tested in established animal challenge models of NiV and HeV infection and disease.


Asunto(s)
Enfermedades Transmisibles Emergentes/prevención & control , Virus Hendra/inmunología , Infecciones por Henipavirus/prevención & control , Virus Nipah/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Quirópteros/virología , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/virología , Modelos Animales de Enfermedad , Infecciones por Henipavirus/inmunología , Humanos , Ratones , Zoonosis Virales/prevención & control , Zoonosis Virales/transmisión
15.
Curr Opin Virol ; 44: 97-111, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32784125

RESUMEN

Emerging viral diseases pose a major threat to public health worldwide. Nearly all emerging viruses, including Ebola, Dengue, Nipah, West Nile, Zika, and coronaviruses (including SARS-Cov2, the causative agent of the current COVID-19 pandemic), have zoonotic origins, indicating that animal-to-human transmission constitutes a primary mode of acquisition of novel infectious diseases. Why these viruses can cause profound pathologies in humans, while natural reservoir hosts often show little evidence of disease is not completely understood. Differences in the host immune response, especially within the innate compartment, have been suggested to be involved in this divergence. Natural killer (NK) cells are innate lymphocytes that play a critical role in the early antiviral response, secreting effector cytokines and clearing infected cells. In this review, we will discuss the mechanisms through which NK cells interact with viruses, their contribution towards maintaining equilibrium between the virus and its natural host, and their role in disease progression in humans and other non-natural hosts.


Asunto(s)
Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/transmisión , Células Asesinas Naturales/inmunología , Zoonosis Virales/inmunología , Zoonosis Virales/transmisión , Animales , COVID-19/inmunología , COVID-19/transmisión , Quirópteros/virología , Haplorrinos/virología , Humanos , Roedores/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/transmisión
17.
Elife ; 92020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32510329
18.
Nat Commun ; 11(1): 2842, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503971

RESUMEN

Characterizing the circulation of Mayaro virus (MAYV), an emerging arbovirus threat, is essential for risk assessment but challenging due to cross-reactivity with other alphaviruses such as chikungunya virus (CHIKV). Here, we develop an analytical framework to jointly assess MAYV epidemiology and the extent of cross-reactivity with CHIKV from serological data collected throughout French Guiana (N = 2697). We find strong evidence of an important sylvatic cycle for MAYV with most infections occurring near the natural reservoir in rural areas and in individuals more likely to go to the forest (i.e., adult males) and with seroprevalences of up to 18% in some areas. These findings highlight the need to strengthen MAYV surveillance in the region and showcase how modeling can improve interpretation of cross-reacting assays.


Asunto(s)
Infecciones por Alphavirus/epidemiología , Arbovirus/aislamiento & purificación , Virus Chikungunya/inmunología , Enfermedades Transmisibles Emergentes/epidemiología , Monitoreo Epidemiológico , Adolescente , Adulto , Infecciones por Alphavirus/sangre , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/virología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Arbovirus/inmunología , Niño , Preescolar , Enfermedades Transmisibles Emergentes/sangre , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/virología , Reacciones Cruzadas/inmunología , Estudios Transversales , Femenino , Guyana Francesa/epidemiología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Lactante , Masculino , Persona de Mediana Edad , Salud Rural/estadística & datos numéricos , Estudios Seroepidemiológicos , Adulto Joven
19.
J Med Microbiol ; 69(5): 653-656, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32320375

RESUMEN

Much has happened here since the local news media trumpeted the first Australian COVID-19 fatality, and stirred up a medieval fear of contagion. We now need to take a step back to examine the logic underlying the use of our limited COVID-19 countermeasures. Emerging infectious diseases by their nature, pose new challenges to the diagnostic-treatment-control nexus, and push our concepts of causality beyond the limits of the conventional Koch-Henle approach to aetiology. We need to use contemporary methods of assessing causality to ensure that clinical, laboratory and public health measures draw on a rational, evidence-based approach to argumentation. The purpose of any aetiological hypothesis is to derive actionable insights into this latest emerging infectious disease. This review is an introduction to a conversation with medical microbiologists, which will be supported by a moderated blog.


Asunto(s)
Betacoronavirus/patogenicidad , Enfermedades Transmisibles Emergentes/epidemiología , Contención de Riesgos Biológicos/métodos , Infecciones por Coronavirus/epidemiología , Higiene/educación , Neumonía Viral/epidemiología , Sustitución de Aminoácidos , Betacoronavirus/genética , Betacoronavirus/crecimiento & desarrollo , COVID-19 , Causalidad , China , Enfermedades Transmisibles Emergentes/diagnóstico , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/terapia , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/terapia , Diagnóstico por Imagen/métodos , Europa (Continente) , Humanos , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/inmunología , Neumonía Viral/terapia , Salud Pública/tendencias , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Vacunas Virales/biosíntesis , Vacunas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...